Search results for "Mixed matrix membrane"

showing 9 items of 9 documents

Glassy PEEK‐WC vs Rubbery Pebax®1657 Polymers: Effect on the Gas Transport in CuNi‐MOF Based Mixed Matrix Membranes

2020

Mixed matrix membranes (MMMs) are seen as promising candidates to overcome the fundamental limit of polymeric membranes, known as the so-called Robeson upper bound, which defines the best compromise between permeability and selectivity of neat polymeric membranes. To overcome this limit, the permeability of the filler particles in the MMM must be carefully matched with that of the polymer matrix. The present work shows that it is not sufficient to match only the permeability of the polymer and the dispersed phase, but that one should consider also the individual contributions of the diffusivity and the solubility of the gas in both components. Here we compare the gas transport performance o…

Materials scienceSolucions polimèriques02 engineering and technology010402 general chemistry01 natural scienceslcsh:Technologylcsh:ChemistryDifferential scanning calorimetryPebax®1657Rubbery polymerPeekGeneral Materials ScienceGas separationSolubilityInstrumentationlcsh:QH301-705.5CuNi-MOFFluid Flow and Transfer Processeschemistry.chemical_classificationlcsh:TProcess Chemistry and TechnologyGlassy polymerTermoplàsticsGeneral EngineeringGas separationPEEK-WCPolymer021001 nanoscience & nanotechnologylcsh:QC1-9990104 chemical sciencesComputer Science ApplicationsMembraneChemical engineeringchemistrylcsh:Biology (General)lcsh:QD1-999Permeability (electromagnetism)lcsh:TA1-2040BarrerMixed matrix membrane0210 nano-technologylcsh:Engineering (General). Civil engineering (General)pebax<sup>®</sup>1657lcsh:Physics
researchProduct

Efficient Gas Separation and Transport Mechanism in Rare Hemilabile Metal–Organic Framework

2019

Understanding/visualizing the established interactions between gases and adsorbents is mandatory to implement better performance materials in adsorption/separation processes. Here we report the unique behavior of a rare example of a hemilabile chiral three-dimensional metal–organic framework (MOF) with an unprecedented qtz-e-type topology, with formula CuII2(S,S)-hismox·5H2O (1) (hismox = bis[(S)-histidine]oxalyl diamide). 1 exhibits a continuous and reversible breathing behavior, based on the hemilability of carboxylate groups from l-histidine. In situ powder (PXRD) and single crystal X-ray diffraction (SCXRD) using synchrotron radiation allowed us to unveil the crystal structures of four …

Materials scienceGeneral Chemical EngineeringQuímica organometàl·lica02 engineering and technologyCrystal structure010402 general chemistry01 natural scienceschemistry.chemical_compoundAdsorptiontransport mechanismMaterials ChemistryGas separationCarboxylateQuímica InorgánicaGas separationGeneral ChemistryMetal Organic FrameworkCiència dels materials021001 nanoscience & nanotechnologyEfficient gas separation0104 chemical scienceschemistryHemilabilityPhysical chemistryRare hemilabile metal-organic frameworkmixed matrix membranesMetal-organic frameworkTransport mechanism0210 nano-technologySingle crystalPowder diffractionChemistry of Materials
researchProduct

PBI mixed matrix hollow fiber membrane: Influence of ZIF-8 filler over H2/CO2 separation performance at high temperature and pressure

2020

High performance and commercially attractive mixed-matrix membranes were developed for H2/CO2 separation via a scalable hollow fiber spinning process. Thin (~300 nm) and defect-free selective layers were successfully created with a uniform distribution of the nanosized (~60 nm) zeolitic-imidazole framework (ZIF-8) filler within the polymer (polybenzimidazole, PBI) matrix. These membranes were able to operate at high temperature (150 °C) and pressure (up to 30 bar) process conditions required in treatment of pre-combustion and syngas process gas streams. Compared with neat PBI hollow fibers, filler incorporation into the polymer matrix leads to a strong increase in H2 permeance from 65 GPU t…

Materials scienceFiltration and Separation02 engineering and technologyPermeance021001 nanoscience & nanotechnologyCO2 capturePre-combustionH2/CO2 separationH/CO separationAnalytical ChemistryAdsorptionMembrane020401 chemical engineeringChemical engineeringHollow fiber membraneMixed matrix membraneGas separationFiber0204 chemical engineering0210 nano-technologyCO captureHollow fiber spinningSyngasBar (unit)
researchProduct

Gas Transport in Mixed Matrix Membranes: Two Methods for Time Lag Determination

2020

The most widely used method to measure the transport properties of dense polymeric membranes is the time lag method in a constant volume/pressure increase instrument. Although simple and quick, this method provides only relatively superficial, averaged data of the permeability, diffusivity, and solubility of gas or vapor species in the membrane. The present manuscript discusses a more sophisticated computational method to determine the transport properties on the basis of a fit of the entire permeation curve, including the transient period. The traditional tangent method and the fitting procedure were compared for the transport of six light gases (H2, He, O2, N2, CH4, and CO2) and ethane an…

Materials scienceGeneral Computer ScienceResidual gas analyzerThermodynamics02 engineering and technology010402 general chemistryThermal diffusivity01 natural sciencesMethanelcsh:QA75.5-76.95Theoretical Computer Sciencechemistry.chemical_compoundGas separationSolubilitygas separationMOFOn-line mass spectrometryApplied Mathematicsmixed gas diffusiondiffusionPermeation021001 nanoscience & nanotechnology0104 chemical sciencesMembranechemistryTime lag methodtransport phenomenaModeling and Simulationmixed matrix membraneslcsh:Electronic computers. Computer science0210 nano-technologyTransport phenomenaComputation
researchProduct

Bioinspired Metal-Organic Frameworks in Mixed Matrix Membranes for Efficient Static/Dynamic Removal of Mercury from Water

2020

The mercury removal efficiency of a novel metal-organic framework (MOF) derived from the amino acid S-methyl-L-cysteine is presented and the process is characterized by single-crystal X-ray crystallography. A feasibility study is further presented on the performance of this MOF and also that of another MOF derived from the amino acid L-methionine when used as the sorbent in mixed matrix membranes (MMMs). These MOF-based MMMs exhibit high efficiency and selectivity in both static and dynamic regimes in the removal of Hg2+ from aqueous environments, due to the high density of thioalkyl groups decorating MOF channels. Both MMMs are capable to reduce different concentration of the pollutant to …

Mixed matrixMaterials scienceGroundwater remediationchemistry.chemical_element02 engineering and technology010402 general chemistryAigua potable Depuració01 natural sciencesBiomaterialscapture devicemercury(II)ElectrochemistryMaterialsmetal-organic frameworksfungiwater remediation021001 nanoscience & nanotechnologyCondensed Matter Physics6. Clean water0104 chemical sciencesElectronic Optical and Magnetic MaterialsMercury (element)MembranechemistryChemical engineeringMetal-organic frameworkmixed matrix membranes0210 nano-technology
researchProduct

Tuning Selectivities in Gas Separation Membranes Based on Polymer-Grafted Nanoparticles

2020

Polymer membranes are critical to many sustainability applications that require the size-based separation of gas mixtures. Despite their ubiquity, there is a continuing need to selectively affect the transport of different mixture components while enhancing mechanical strength and hindering aging. Polymer-grafted nanoparticles (GNPs) have recently been explored in the context of gas separations. Membranes made from pure GNPs have higher gas permeability and lower selectivity relative to the neat polymer because they have increased mean free volume. Going beyond this ability to manipulate the mean free volume by grafting chains to a nanoparticle, the conceptual advance of the present work is…

Materials scienceheterogeneous transport mediaimproved selective transportSynthetic membraneGeneral Physics and AstronomyNanoparticlegas separation membraneContext (language use)02 engineering and technology010402 general chemistry01 natural sciencesGeneral Materials ScienceGas separationfree volume distributionchemistry.chemical_classificationpolymer-grafted nanoparticlesGeneral EngineeringPolymer021001 nanoscience & nanotechnology0104 chemical sciencesMembranechemistryChemical engineeringVolume (thermodynamics)mixed matrix membrane0210 nano-technologySelectivity
researchProduct

Fabrication of zinc doped aluminium oxide/polysulfone mixed matrix membranes for enhanced antifouling property and heavy metal removal

2021

International audience; Heavy metal removal from water resources is essential for environmental protection and the production of safe drinking water. In this direction, Zinc doped Aluminium Oxide (Zn:Al2O3) nanoparticles were incorporated into Polysulfone (PSf) to prepare mixed matrix membranes for the efficient removal of heavy metals from water. These Zn:Al2O3 nanoparticles prepared by the solution combustion method have a very high surface area (261.44 m2/g) with an approximate size of 50 nm. X-ray Photoelectron Spectroscopy analysis showed that the Al and Zn were in +3 and + 2 oxidation states, respectively. Cross-sectional Scanning Electron Microscopy images revealed the finger-like mo…

Environmental EngineeringMaterials sciencePolymersAnti-fouling studyHealth Toxicology and Mutagenesis0208 environmental biotechnologyNanoparticlechemistry.chemical_element02 engineering and technologyZinc010501 environmental sciences01 natural sciencesMetalchemistry.chemical_compoundMixed matrix membranesMetals HeavyAluminum OxideEnvironmental Chemistry[CHIM]Chemical SciencesSulfonesSurface chargePolysulfonePorosityHydrophilicity0105 earth and related environmental sciencesPublic Health Environmental and Occupational HealthMembranes ArtificialGeneral MedicineGeneral ChemistryPollution6. Clean water020801 environmental engineeringZincCross-Sectional StudiesMembraneChemical engineeringchemistry13. Climate actionHeavy metal ionsvisual_artvisual_art.visual_art_mediumAluminium oxide
researchProduct

Preparation of fouling resistant and highly perm-selective novel PSf/GO-vanillin nanofiltration membrane for efficient water purification

2022

International audience; To meet the rising global demand for water, it is necessary to develop membranes capable of efficiently purifying contaminated water sources. Herein, we report a series of novel polysulfone (PSf)/GO-vanillin nanofiltration membranes highly permeable, selective, and fouling resistant. The membranes are composed of two-dimensional (2D) graphite oxide (GO) layers embedded with vanillin as porogen and PSf as the base polymer. There is a growing interest in addressing the synergistic effect of GO and vanillin on improving the permeability and antifouling characteristics of membranes. Various spectroscopic and microscopic techniques were used to perform detailed physicoche…

Environmental EngineeringPolymersHealth Toxicology and Mutagenesischemistry.chemical_elementPortable water purification02 engineering and technology010402 general chemistry01 natural sciencesWater PurificationBiofoulingchemistry.chemical_compoundEnvironmental Chemistry[CHIM]Chemical SciencesPolysulfoneSulfonesWaste Management and DisposalSalt rejectionFoulingMagnesiumStrategic Defence & Security StudiesFouling resistantVanillinMembranes ArtificialOxidesPSf/GO-vanillin membrane021001 nanoscience & nanotechnologyPollution6. Clean waterNanofiltration0104 chemical sciencesMembranechemistryChemical engineering03 Chemical Sciences 05 Environmental Sciences 09 EngineeringBenzaldehydesMixed matrix membraneGraphiteNanofiltration0210 nano-technology
researchProduct

Impact of graphitic carbon nitride nanosheets in mixed- matrix membranes for removal of heavy metals from water

2021

International audience; Removal of heavy metal ions from water is being a challenge and Polysulfone (PSf) membranes have shown great potential to remove them from contaminated solutions. In this work, the introduction of Graphitic carbon nitride nanosheets (g-C3N4) into PSf membranes was implemented to improve the permeability and separation performance of PSf membranes. g-C3N4 was incorporated into the membrane matrix via nonsolvent induced phase inversion method. The prepared mixed matrix membranes showed enhanced performances towards water filtration. The incorporation of g-C3N4 into the membrane matrix caused an increase in the desired physicochemical properties like hydrophilicity and …

Metal ions in aqueous solution02 engineering and technology010501 environmental sciences01 natural scienceslaw.inventionIonchemistry.chemical_compoundMixed matrix membranes020401 chemical engineeringlawg-C3N4 nanosheets[CHIM]Chemical SciencesPolysulfone0204 chemical engineeringPhase inversion (chemistry)Safety Risk Reliability and QualityWaste Management and DisposalFiltration0105 earth and related environmental sciencesProcess Chemistry and TechnologyGraphitic carbon nitrideToxic metal ionAnti-fouling properties6. Clean waterMembranechemistryChemical engineering13. Climate actionPermeability (electromagnetism)Biotechnology
researchProduct